THE 8TH INTERNATIONAL CONFERENCE ON MULTIMEDIA ANALYSIS AND PATTERN RECOGNITION # Few-Shot Instance Segmentation: An Exploration in the Frequency Domain for Camouflage Instances Thanh-Danh Nguyen^{1,2}, Hung-Phu Cao³, Thanh Duc Ngo^{1,2}, Vinh-Tiep Nguyen^{†1,2}, and Tam V. Nguyen³ ¹University of Information Technology, Ho Chi Minh City, Vietnam, ²Vietnam National University, Ho Chi Minh City, Vietnam, ³Endava Vietnam, Ho Chi Minh City, Vietnam, ⁴University of Dayton, Dayton, OH 45469, United States {danhnt, thanhnd, tiepnv}@uit.edu.vn, caohungphu@hotmail.com, tamnguyen@udayton.edu, †corresponding author *Nha Trang, August 14-15th, 2025* # Content - 1. Introduction to Few-shot Camouflage Instance Segmentation - 2. Related work - 3. Our proposed FS-CAMOFreq framework - Few-shot Camouflage Instance Segmentation - Instance-ware Frequency-based Enhancement - 4. Experiments - 5. Conclusion # 1. Introduction - "Camouflage" is a defense mechanism that animals use to conceal their appearance by blending in with their environment - **Applications:** search-and-rescue work, wild species discovery and preservation, medical diagnostic, etc. # 1. Introduction - Few-shot Camouflage Instance Segmentation (Few-shot CIS) is formulated as a two-stage training task: - Base training phase on abundant annotated data of general domain - Novel fine-tuning phase on few-shot sample of novel domain # 1. Introduction Focused challenge: color space image augmentation fails due to the similar representation of the input camouflage image Contribution: we propose a few-shot camouflage instance segmentation via an instance-aware frequency-based augmentation, dubbed FS-CAMOFreq Fig. Breaking a camouflage image into the frequency domain by a phase and an amplitude component via Fast Fourier Transform FFT. # 2. Related work - Image Segmentation Research - Few-shot Learning in Image Segmentation: general and camouflage domain - Data Enhancement in Camouflage Image Segmentation - Few-shot Camouflaged Datasets for Instance Segmentation | Dataset | Year | Venue | Туре | #Annot.
Camo. Img. | #Meta-
Cat. | #Obj.
Cat. | Bbox.
GT | Obj.
Mask GT | Ins.
Mask GT | Few-shot | |--------------------|------|-------------|-------|-----------------------|----------------|---------------|-------------|-----------------|-----------------|----------| | CamouflagedAnimals | 2016 | ECCV | Video | 181 | - | 6 | × | √ | √ | × | | MoCA | 2020 | ACCV | Video | 7,617 | _ | 67 | ✓ | × | × | × | | CHAMELEON | 2018 | _ | Image | 76 | _ | - | × | ✓ | × | × | | CAMO | 2019 | CVIU | Image | 1,250 | 2 | 8 | × | ✓ | × | × | | COD | 2020 | CVPR | Image | 5,066 | 5 | 69 | ✓ | ✓ | ✓ | × | | NC4K | 2021 | CVPR | Image | 4,121 | 5 | 69 | ✓ | ✓ | ✓ | × | | CAMO++ | 2022 | TIP | Image | 2,695 | 10 | 47 | ✓ | ✓ | ✓ | × | | CAMO-FS | 2024 | IEEE ACCESS | Image | 2,852 | 10 | 47 | ✓ | ✓ | ✓ | ✓ | Tab. Comparison among camouflage datasets (w/o non-camouflaged images) - **FS-CAMOFreq** has 2 main components: Instance-Aware Frequency-Based Data Enhancement - ► Few-shot Instance Segmentation Pipeline Fig. Overview of our FS-CAMOFreq framework exploiting the instance-ware frequency-based enhancement in few-shot camouflage instance segmentation. **FS-CAMOFreq** employs the Instance-Aware Frequency-Based Data Enhancement to enhance the visibility of the camouflage instance from the background in Few-shot Instance Segmentation ## **Instance-Aware Frequency-Based Data Enhancement** Focus: Instance-Aware Frequency-Based Data Enhancement - We swap the amplitude of the background (where mask M=0) with that of the reference image I_R , while keeping the original foreground amplitude and phase unchanged - → To amplify the visual contrast between the instance and its background to make the camouflaged object more distinguishable ## **Few-shot Instance Segmentation Pipeline** Focus: Instance-Aware Frequency-Based Data Enhancement Following FS-CDIS^[4] and CamoFA^[13], our **FS-CAMOFreq** framework exploits the frequency-based data enhancement in an instance-aware manner. ## **Few-shot Instance Segmentation Pipeline** Focus: Instance-Aware Frequency-Based Data Enhancement ## Our FS-CAMOFreq formulates the few-shot CIS task with: - > Base training phase: on 80 COCO classes - Novel fine-tuning phase: on 47 CAMO-FS classes with 1, 2, 3, 5 shots per novel class # 4. Experiments - Successfully employ frequency-based enhancement in few-shot learning on camouflage instance segmentation domain - Our FS-AMOFreq improves over the SoTA FS-CDIS^[7] in both tasks on CAMO-FS benchmark | T 1 0 1 1 1 | | FO T | | 200 00 EDN D N . 404 | |-------------------------|--------------------|-----------------------|--------------------|------------------------| | lab. State-ot-the-art o | comparison on CAMO | FS dataset. The chose | n backbones are CC | DCO-80 FPN-ResNet-101. | | Model | | | | nAP | | | | nAP50 | | | | | nAP75 | | | | | | | |---|-----------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--|--|--------------------------------------|--|--|--------------------------------------|--|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------| | Backbone/ | | Instan | Instance Segmentation Object D | | | ect Dete | tection Instance Segmentation | | | | Object Detection | | | Instance Segmentation | | | Object Detection | | | | Method | Num. of shots | 1 | 5 | Avg. | | MTFA [3]
M-RCNN [28]
iFS-RCNN [2] | COCO-80
ResNet-50 | 2.48
4.08
4.17 | 6.40
8.29
6.38 | 4.44
6.19
5.28 | 1.98
2.82
3.92 | 6.17
6.18
6.60 | 4.08
4.50
5.26 | 4.24
6.91
6.19 | 9.89
13.89
10.02 | 7.07
10.40
8.11 | 4.12
6.78
6.23 | 9.94
13.92
10.15 | 7.03
10.35
8.19 | 2.38
4.34
4.93 | 8.04
8.18
7.32 | 5.21
6.26
6.13 | 1.47
1.45
4.47 | 6.40
4.51
7.17 | 3.94
2.98
5.82 | | MTFA [3]
M-RCNN [28]
iFS-RCNN [2]
FS-CDIS-ITL* [4]
FS-CDIS-IMS* [4] | COCO-80
ResNet-101 | 3.66
4.39
4.27
5.35
2.99 | 5.95
10.09
7.80
9.35
9.03 | 4.81
7.24
6.04
7.35
6.01 | 2.93
3.03
3.79
4.71
2.74 | 5.84
7.79
8.08
10.36
8.44 | 4.39
5.41
5.94
7.54
5.59 | 5.37
7.58
5.98
7.80
4.62 | 8.67
15.41
11.35
14.01
12.48 | 7.02
11.50
8.67
10.91
8.55 | 5.86
7.53
5.92
7.85
4.81 | 9.13
15.86
11.52
14.40
13.18 | 7.50
11.70
8.72
11.13
9.00 | 4.09
4.53
4.75
6.04
3.36 | 6.94
11.90
9.15
11.57
9.82 | 5.52
8.22
6.95
8.81
6.59 | 2.20
1.42
4.46
5.51
2.98 | 6.04
5.34
9.24
11.32
9.69 | 4.12
3.38
6.85
8.42
6.34 | | | | | | | | | Our pe | rformaı | nce | | | | | | | | | | | | Baseline FS-CAMOFreq † FS-CAMOFreq (ours) | COCO-80
ResNet-101 | 5.55
5.71 | 8.21
8.31 | 6.88
7.01 | 5.34
5.56 | 8.82
8.89 | 7.08
7.23 | 8.42
8.50 | 12.07
11.72 | 10.25
10.11 | 8.49
8.56 | 12.86
12.11 | 10.68
10.34 | 6.19
6.46 | 9.58
9.53 | 7.89
8.00 | 5.98
6.25 | 9.22
9.49 | 7.60
7.87 | ^{*} denotes the FS-CDIS results built on top of iFS-RCNN [2] [†] denotes our reproduced baseline FS-CDIS iFS-RCNN [2], [4] on our upgraded CUDA version 12.4 # 4. Experiments – Ablation study Tab. Ablation study of our FS-CAMOFreq on instance region augmentation evaluated on CAMO-FS | FS-CAMOFreq | | Detection | n | Segmentation | | | | | | |------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--|--|--| | Num. of shots | nAP | nAP50 | nAP75 | nAP | nAP50 | nAP75 | | | | | 1
2
3
5 | 5.63
5.64
4.94
6.12 | 8.38
8.10
7.17
9.01 | 6.44
6.56
5.71
6.59 | 5.31
5.65
5.16
6.84 | 8.44
8.36
7.35
9.64 | 5.97
6.49
5.78
7.53 | | | | | Avg. | 5.58 | 8.17 | 6.33 | 5.74 | 8.45 | 6.44 | | | | - This inverse setting results in performance degradation - Altering foreground features disrupts camouflage cues, leading to model confusion and reduced accuracy # 5. Conclusion #### In this work: - We proposed FS-CAMOFreq a novel framework that enriches image representations through instance-aware frequency domain augmentation - Extensive experiments on the CAMO-FS benchmark validate the superiority of our approach over existing state-of-the-art baselines #### In the future: - Explore the adaptive frequency-based enhancement approach - Extend our framework to other dense prediction tasks under limited supervision # MAPR 2025 THE 8TH INTERNATIONAL CONFERENCE ON MULTIMEDIA ANALYSIS AND PATTERN RECOGNITION # Few-Shot Instance Segmentation: An Exploration in the Frequency Domain for Camouflage Instances Thanh-Danh Nguyen^{1,2}, Hung-Phu Cao³, Thanh Duc Ngo^{1,2}, Vinh-Tiep Nguyen^{†1,2}, and Tam V. Nguyen³ ¹University of Information Technology, Ho Chi Minh City, Vietnam, ²Vietnam National University, Ho Chi Minh City, Vietnam, ³Endava Vietnam, Ho Chi Minh City, Vietnam, ⁴University of Dayton, Dayton, OH 45469, United States {danhnt, thanhnd, tiepnv}@uit.edu.vn, caohungphu@hotmail.com, tamnguyen@udayton.edu, †corresponding author **Acknowledgements**